DELHI TECHNOLOGICAL UNIVERSITY

Department of Civil Engineering

Syllabi for Master of Technology

Structural Engineering

M. Tech. Structural Engineering				
Course code: Course Title		urse ucture.		Pre-Requisite
CTE501. Chunghung Dynamias	L	Т	Р	NL1
STE501: Structural Dynamics		1	2	Nil

Course Objective: The course provides the basic concepts of structural dynamics and the theoretical background to perform dynamic analysis of structures. The course focuses on the analysis of single and multi-degree-of-freedom systems. An introduction to a distributed parameter system is also included. The course also provides an introduction to earthquake analysis of structures.

S. No	Course Outcomes (CO)					
CO1	· · /	thematically model	a structural system for dyna	umic		
CO2	Carry out a free vibration analysis of a single degree of freedom.					
CO3	Analyse a single degree of loading, and general dynam	-	jected to harmonic loading,	periodic		
CO4	Perform free vibration and systems.	forced vibration and	alyses of multi-degree-of-fro	eedom		
CO5	-	-	distributed parameter systen ultiple degrees of freedom.	n and as an		
	CO-]	PO Articulation Me	etrices			
Course Outco	PO1	PO2	PO3			
me						
CO1	3	1	1			
CO2	3	2	1			
CO3	3	2	1			
CO4	3	3	2			
CO5	3	3	3			
S. No		Contents		Contact hours		
UNIT 1	Vibrations and the nature of time-dependent phenomena, inertia, dynamic8equilibrium, and mathematical models of physical systems; Energy storing and dissipation mechanisms.8					
UNIT 2	principle. Dynamics of Sing	gle Degree of Freedo	on's laws, D'Alembert's om Systems, undamped and ate and transient response,	8		

UNIT 3	NIT Harmonic response and applications to vibration isolation; theory o seismic pickups: Seismometers, accelerometers.			
UNIT 4 Dynamics of Multi-Degree of Freedom Systems, Lagrange's equations; equations of motion for MDOF systems; Algebraic eigenvalue problem and free vibration analysis; Undamped and damped normal modes; Approximate Methods for Vibration Analysis, Rayleigh method, Stodola Method, Holzer Method.				
UNIT 5	transverse vibrations of beams torsional vibrations of shatts. Normal			
	TOTAL		36	
REFER	ENCES			
	S. No. Name of Books/Authors/Publishers Publ			
S. No.	Name of Books/Authors/Publishers	Year of Publica Reprint	tion /	
	Name of Books/Authors/Publishers Agarwal, Pankaj, Shrikhande, Manish. (2006), "Earthquake Resistant Design of Structures", Prentice–Hall India.		tion /	
	Agarwal, Pankaj, Shrikhande, Manish. (2006), "Earthquake	Publica Reprint	tion /	
1	Agarwal, Pankaj, Shrikhande, Manish. (2006), "Earthquake Resistant Design of Structures", Prentice–Hall India.2.Chopra, A. K. (1995). "Dynamics of structures" (Vol. 3) - New	Publica Reprint 2006	tion /	

Paz M (2012). "Structural dynamics: theory and computation" -

5

PO1: An ability to independently carry out research/investigation, and development work to solve practical problems.

2012

PO2: An ability to write and present a substantial technical report/ document.

Springer Science & Business Media.

PO3: Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering				
Course code: Course Title		Course Structure.		Pre-Requisite
STE502: Finite Element Methods in Structural	L	Τ	Р	Nil
Engineering	3	1	0	

Course Objective: To provide the fundamental concepts in the theory of finite element analysis. To analyse problems related to bar, truss, beam, and plane elements using the finite element approach. To develop a basic understanding of modelling considerations related to finite element programming.

-	_		_	-	-	-			
S. No	Course Outcomes (CO)		I						
CO1		pply potential energy concepts or vibrational methods for solving complex structural cometries of civil engineering applications.							
CO2	-	alculate the shape functions of one and two-dimensional elements for enriching nowledge on the stiffness matrix and load vector.							
CO3		apply finite element methods on one-dimensional bar elements for obtaining isplacements, stresses, strains, and reaction forces.							
CO4	-	Determine displacements, stresses, strains and reaction forces of two degree of reedom two nodded truss and beam elements using FEM.							
CO5	Solve truss and beam elemedisplacements, stresses, an						etermining		
		PO Articulation Mo							
Course Outco me	PO1	PO2				PO3			
CO1	3	1				1			
CO2	3	2				1			
CO3	3	2				1			
CO4	3	3				2			
CO5	3	3				3			
S. No	S. No Contents					Contact hours			
UNIT 1	General concepts of continuum/solid mechanics, State variables, stress, strain-displacement relationships defining different classes of problems, Euler-Bernoulli and Timoshenko beam models, Formulation of 3D elasticity, Kirchhoff's plate theory, and Mindlin plate theory-based plate problems, Principle of total minimum stationary potential Energy, Stress					8			

calculation

UNIT 2	Rayleigh Ritz method, Variational formulation of continuous syst Analysis of continuous systems (discretization approach), Mesh genera techniques, Galerkin and other methods of weighted residual, Genera and natural coordinate models of displacement field, Convergence crit Numerical errors and F.E. model refinements.	ation lized	8	
UNIT 3	 EBBM based beam problem, Plane stress and plane strain problems using generalized coordinate displacement model, Shape functions for Lagrangian family of rectangular elements, triangular elements, r-s-t coordinate method, Area coordinates, Serendipity elements, Tetrahedron and hexahedron elements, Iso-parametric elements, Elements with curved boundaries, Cartesian mapping relationship from local and natural coordinates, Jacobian, Numerical integration methods 			
UNIT 4	Using natural coordinate displacement model stiffness matrix for element, TBM based beam problem, Plane stress/plane strain prob using quadrilateral and triangular elements, Determination of load ve Plate bending problem with rectangular and triangular elements, Herm polynomials and a conforming plate bending element, Initial value eigen value problems	lems ector, nitian	8	
UNIT 5	Axisymmetric elasticity problems, Dissimilar elements, Shear loc defect, Under integration and Suitable integration order and infinite singularity elements issues, Patch tests, Problems in NISA, ANSYS other FEM software.	and	8	
	TOTAL		42	
REFER	ENCES		2	
S. No.	Name of Books/Authors/Publishers	Year Publi Repri	cation /	
1	Krishnamoorty, C.S, "Finite Element Analysis" - McGraw-Hill.			
2	Zienkiewicz, O. C., Taylor, R. L., Zienkiewicz, O. C., & Taylor, R. L. (1977) "The finite element method", (Vol. 3)- London: McGraw hill.	1977		
3	Hughes, T. J. (2012) "The finite element method: linear static and dynamic finite element analysis"- Courier Corporation.	2012		
4	Shah D. E. "Finite Element Method"- Pearson.	2011		

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech	. Structural Engineering							
Course o	code: Course Title			irse ucture	•	Pre-Req	uisite	
STE503	3: Applied Numerical N	lethods	L 3	Т 0	P 2			
-	-		-	-	-	-		
The grad apply the finds and Special	Objective: To solve com duate student must be we nem. This course equips pplications in civil eng focus is given to the finit amental concepts of this nur	ell-versed in nume the student with gineering, across te element method,	vari vari var	methe ous n ious	ods, a umeri strean	long with cal techni ns (specia	skills to ques that alisations).	
S. No	Course Outcomes (CO)	ourse Outcomes (CO)						
CO1	Able to calculate errors inc	luced in the values b	by the	e trunca	ation o	of a series of	expansion.	
CO2	Able to find roots of linear equations.	and non-linear syst	ems	algebr	aic an	d transcene	lental)	
CO3	To fit polynomials to a giv	ven set of data points	s.					
CO4	To solve differential and in	tegral equations nur	neric	ally.				
	CO-]	PO Articulation Mo	etric	es				
Course Outco me	PO1	PO2				PO3		
CO1	3	1				1		
CO2	3	2				1		
CO3	3	2				1		
CO4	3	3				2		
CO5	3	3				3		
S. No		Contents					Contact hours	
UNIT 1	Types of errors, General Nonlinear equations: Class roots, Bisection Method, R Fixed Point iteration, Mulle software to solve problems	sification of Metho egula Falsi Method, er's Method. Use bui	ds, A , New	pproxi ton Ra	mate phson	values of Method,	8	

UNIT 2	Linear Systems of Equations: Direct Method - Matrix Inversion Method, Gauss Elimination Method, Gauss Jordan Elimination Method, Cholesky Method. Iterative Methods- Jacobi Iteration Method, Gauss-Seidel Method. Eigenvalue problem. Use built-in functions in MATLAB software to solve problems.						8
UNIT 3	Interpolation and Approximation: Lagrange and Newton Interpolation, Finite difference operators. Use built-in functions in MATLAB software to solve problems.					10	
UNIT 4	Numerical solution of Ordinary: Introduction, solution by Taylor's series, Picard's method of successive approximations, Euler's method: Error estimates for the Euler method, modified Euler's method, Runge-Kutta methods, simultaneous and higher order equations using Taylor's series, Picard's method of successive approximations, Euler's method, Boundary Value Problems: Finite Difference method.				8		
UNIT 5	Numerical solution of Partial Differential Equations: Introduction, Finite8Difference Approximation to derivatives, Laplace's, Parabolic Equations8and Hyperbolic Equation: Jacobi's method, Gauss Seidel method, Iterative8methods for the solution of equations, Variational and weighted residual8methods, Introduction of FEM.8				8		
	TOTAL		-		-		42
_	-	-	-	-	-		
REFERI	ENCES						
S. No.	Year o			ication /			
1	Numerical Analysis: Goel& Mittal						
2	Applied Numerical Analysis: Gerald & Wheatle	ey				1977	
3	Numerical Methods for Engineers: Chapra & Ca	anal	e			2012	
4	Introductory Methods of Numerical Analysis: Sa	astr	y				

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering				
Course code: Course Title		urse ucture.		Pre-Requisite
STE504. Advanced Theory of Structures	L	Т	Р	Nil
STE504: Advanced Theory of Structures		0	2	IN11

Course Objective: The objective of the course is to have an insight into the behaviour of structural systems and to build up technical competence to model and analyse indeterminate structures using analysis computer software and manually using the matrix method of analysis.

S. No	Course Outcomes (CO)							
CO1	Evaluate Plane and Space	Evaluate Plane and Space frames for linear and non-linear states.						
CO2	Can analyse Plane and Space trusses.							
CO3	Can analyse Continuous beams and Grid frames.							
CO4	Can analyse Curved members	with load in-plane or	perpendicular to plane of the member.					
	CO-	PO Articulation M	etrices					
Course Outco me	PO1	PO2	PO3					
CO1	3	1	1					
CO2	3	2	1					
CO3	3	2	1					

CO4

CO5

S. No	Contents	Contact hours
UNIT 1	Matrix, Vector, identity, symmetric and skew symmetric, sparse, banded, and orthogonal matrices, Addition and multiplication of matrices, inverse of a matrix, and matrices for translation, scaling, and rotation of an object. Indeterminacy, Static and Kinematic indeterminacies, selection of a method of analysis based on indeterminacies, Principle of Superposition, Actions and Displacements, Flexibility and Stiffness methods of analysis, procedural steps of analysis, and numbering of joints for minimum bandwidth.	8
UNIT 2	Stiffness matrix of plane frame and continuous beam members, transformation of stiffness matrices from member axes to the structure axis system, and their assembly. Preparation of load vectors, their	8

S. No.	Name of Books/Authors/Publishers Year Publishers Publishers	r of lication /
REFER	ENCES	
	ΙΟΙΑΣ	72
	TOTAL	42
3	elevation, analysis using Sub-structure technique, effect of axial force on flexural stiffness, and non-linear analysis of structures.	
UNIT 5	space frame members. Stiffness matrices for beams curved in plan and	
	Stiffness matrix and rotation transformation matrices for space truss and	8
•	displacements, determination of support reactions, and member forces.	
4	global axis system, and their assembly. Solution of equations for unknown	
UNIT	Preparation of load vectors, their transformation from member axes to the	8
	global axis system, and their assembly.	
3	frame members, transformation of stiffness matrices from member axes to	
UNIT	reactions, and member end forces. Stiffness matrix of plane truss and grid	
	Solution of equations for unknown displacements, determination of support	10
	assembly.	
	transformation from member axes to the structure axis system, and their	

S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	Martin, H.C.(2005), "Introduction of Matrix Methods of Structural Analysis" - McGraw-Hill	2005
2	Kardestuncer, H.(1974), "Elementary Matrix Analysis of Structures"- McGraw-Hill	1974
3	Weaver W. Jr. and Gere J.M.(2004), "Matrix Analysis of Framed Structures"- CBS publishers and distributors.	2004
4	Ghali; A., Neville; A.M. and Brown; T.G.(2003), "Structural Analysis"- Taylor & Francis Ltd	2006
5	Beaufait, F.W., Rowan, W.H., and Hoadley, P.G.(2000), "Computer Methods of Structural Analysis" - Prentice Hall	2000

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering					
Course code: Course TitleCourse Structure.Pre-Re				Pre-Requisite	
STE505: Design of Advanced Reinforced		Т	Р		
Concrete		0	2	Nil	

Course Objective: Design of advanced reinforced concrete structures is one of the primary requisites of any structural engineer. Hence, the course aims to provide a detailed theoretical background of various design philosophies and their applications using national and international design guidelines. Therefore, at the end of the course, the student is expected to analyse and design various special reinforced concrete structures. The students are also able to apply the knowledge to real civil engineering problems and to design new and advanced reinforced concrete structures.

S. No	Course Outcomes (CO)					
CO1	To develop an understanding of the structural behaviour, safety, and serviceability of RC structures under bending, shear, and torsion.					
CO2	To visualize failure characteristics and the required strength of the RC slab with different edge support conditions					
CO3	Analysis, design, and detatheory).	iling of folded plates	and cylindrical shells (bear	n and arch		
CO4	Design the advanced reinfo	orced concrete struct	ures, like water tanks			
CO5	Design the special reinford	ed concrete structur	al elements, like foundation	s.		
	CO-	PO Articulation Me	etrices			
Course Outco	PO1	PO2	PO3			
me						
CO1	3	1	1			
CO2	3	2	1			
CO3	3	2	1			
CO4	3	3	2			
CO5	3	3	3			
S. No		Contents		Contact hours		
UNIT 1	Review of limit state desig design, and detailing of sin		applicable codes. Analysis,	8		
UNIT 2	Analysis, design, and detailing of folded plates and cylindrical shells (beam and arch theory).					
UNIT	Analysis, design, and deta	ailing of cylindrical	water tanks resting on the	10		

ground (fixed and hinged boundary conditions at base).

3

UNIT 4	Analysis, design and detailing of circular silos including foundat Analysis, design, and detailing of cylindrical chimneys inclu foundations.		8
UNIT 5	type retaining walls. Analysis and design of counterfort and buffress-type		
	TOTAL		42
REFER	ENCES		
S. No.	Year		cation /
1	Pillai and Menon (2003) "Reinforced Concrete Design" - TMH, New Delhi, India.	2003	
2 Karve, S.R. and Shah V L (2014) "Limit State Theory and Design of reinforced Concrete" -VGP, Pune, India.			
3	Varghese, P. C. (2015)"Advanced Reinforced Concrete Design"- PHI, Delhi, India.	Design"- 2015	
4	Winter, G. (1986) "Design of Concrete Structures" -McGraw-Hill, Tokyo, Japan.	1986	

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering					
Course code: Course Title	Course Structure.		Pre-Requisite		
STE507: Theory of Elasticity and Plasticity		Т	Р	NI:1	
		1	0	Nil	

Course Objective: This course advances students from the one-dimensional and linear solid mechanics problems, conventionally treated in courses of strength of materials, into more general, two and three-dimensional problems. Students will be introduced to rectangular and polar coordinate systems to describe stress and strain in an elastic continuum, and also solve various 2D linear elastic problems.

S. No	Course Outcomes (CO)
CO1	Understand stress tensor, equations of equilibrium, kinematic relationships, and equations of compatibility.
CO2	Can analyse plain stress & plain strain cases, use Airy's stress function and Saint-Venant Principle in problems of rectangular & polar coordinates.
CO3	Determine hydrostatic & deviatoric components of stress tensor, invariants of stress tensor, and can also analyse problems post-yielding using Tresca & von Mises yield conditions.
CO4	Can fully analyse thick cylindrical vessels, I-sections, and circular sections.

CO-PO Articulation Metrices

	co i o in ticulation methods							
Course Outco me	PO1	PO2	РОЗ					
CO1	3	1	1					
CO2	3	2	1					
CO3	3	2	1					
CO4	3	3	2					
CO5	3	3	3					

S. No	Contents	Contact hours
UNIT 1	Introduction to the general theory of elasticity, Assumptions and Applications of linear elasticity. Analysis of Stress: Stress tensors, two- dimensional state of stress at a point, principal stresses in two dimensions, direction cosines, stress components on an arbitrary plane with stress transformation. Principal stresses in three dimensions, stress invariants, equilibrium equations, Mohr's stress circle, equilibrium equations Numerical examples.	8

UNIT 2	 Analysis of Strain: Types of strain, strain tensors, strain transformation. Principal strains, strain invariants, and octahedral strains. Mohr's Circle for Strain, equations of Compatibility for Strain, Numerical examples. 			
UNIT 3	Stress-Strain Relations: Generalized Hooke's law, transformation of compatibility Condition from Strain components to stress components. Strain energy in an elastic body, St. Venant's principle, uniqueness theorem. Two-Dimensional Problems in Cartesian Coordinate System: Plane stress and plane strain problems. Stress function, stress function for plane stress and plane strain cases.			
UNIT 4	Torsion of Prismatic Bars: General solution of the torsion problem, stress function, torsion of circular and elliptic cross sections. Prandtl's membrane analogy, torsion of thin-walled and multiple-cell closed sections. Numerical examples.			
UNIT 5	Theory of Plasticity: Concept, various materials and their properties, analysis of civil engineering structures as per the theory of plasticity.			
	TOTAL		42	
REFER	ENCES			
S. No.	Name of Books/Authors/PublishersYearPublRepr			
1	Timoshenko, S. P., & Goodier, J. N. "Theory of Elasticity"-1971McGraw-Hill, New York1971			
2	Chakrabarty, J. "Theory of plasticity" - Butterworth-Heinemann. 2012			
3	Ugural, A. C., & Fenster, S. K. "Advanced strength and applied elasticity"-Pearson education.			

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering					
Course code: Course Title	ourse code: Course Title Course Structure.		Pre-Requisite		
STE511: Advanced Concrete Technology		Т	Р	Nil	
		0	2	1N11	

Course Objective: To familiarize the students with the use and applications of various construction and finishing materials. The students are able to understand the mechanism and behaviour of fibre reinforced concrete, ferrocement, and other cementitious composites over conventional reinforced cement concrete.

	-				
S. No	Course Outcomes (C	0)			
CO1	Understand the testing of concrete materials as per the IS code.				
CO2	Know the procedure to	determine the prop	erties of fresh and hardened	concrete.	
CO3	Design the concrete m	ix using ACI and IS	code methods.		
CO4	Select and Design spec	cial concretes depen	ding on their specific appli	cations.	
CO5	Gain ideas on non-dest	tructive testing of c	oncrete.		
	CO-1	PO Articulation M	etrices		
Course Outcome	PO1	PO2	PO3		
CO1	3	1	1		
CO2	3	2	1		
CO3	3 2 1				
CO4	3 3 2				
CO5	3	3	3		
S. No		Contents		Contact hours	
UNIT 1	Concrete Materials: Cement production, composition, hydration chemistry.			12	
UNIT 2	Aggregates: Geology of aggregates, Chemical and Mineral admixtures for concrete.				
UNIT 3	High Performance concrete mixture proportioning, Concrete Behaviour, Advanced topics in fresh concrete – Rheology, pumping of concrete.				
UNIT 4	Advanced topics in ha loads, creep & shrinka		Behaviour under various lems of Concrete.	10	

	TOTAL	42
REFERE	INCES	
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	Mehta, P. K., and Monteiro, P. J. M. (2014) "Concrete: Microstructure, Properties, and Materials", Fourth Edition (Indian Edition), McGraw-Hill.	2014
2	Neville, A. M. (2013), "Properties of Concrete",- Pearson Fifth Edition.	2013
3	Newman. J. & B. S. Choo,(2003) "Advanced Concrete Technology", (Four Volume Set), Elsevier.	2003

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech.	Structural Engineering						
Course co	ode: Course Title			urse ucture	e.	Pre-Req	uisite
STE513	: Reliability Analysis of	f Structures	L T P 3 0 2		Nil		
	bjective: The objective of of reliability analysis and l					-	
S. No	Course Outcomes (CO)						
CO1	To understand the use of g	general concepts o	f statis	stics fo	or prob	abilistic an	alysis.
CO2	To understand the basic co	oncepts related to	the rel	iabilit	y anal	ysis of stru	ctures.
CO3	To gain adequate knowled	ge about Design	and de	velop	analyt	ical skills.	
CO4	To gain adequate knowled structures.	ge about the diffe	rent m	ethods	of rel	iability ana	lysis of
CO5	To understand Monte-Car	lo simulation and	the co	oncept	of Sys	tem reliabi	lity.
	CO-F	O Articulation N	<u>Aetric</u>	es			
Course Outcom	PO1	PO2				PO3	
e CO1	3	1				1	
CO2	3	2				1	
CO3	3	2				1	
CO4	3	3				2	
CO5	3	3				3	
S. No		Contents					Contac hours
UNIT 1	Introduction to structural s data reduction; histograms Probability theory: Intro functions of random van probability distributions, a	s; measures of asy duction, random riables, moments	mmetr event and	ry; san s, ran expect	nple co dom ation,	orrelation. variables,	8
UNIT 2	Resistance distribution properties of concrete and dimensional variations; c strength of concrete in str stresses based on specified	and parameters: steel, statistics of characterization o cuctures and yield	Intro strengt f vari	duction h of br ables	n; sta icks ar of cor	nd mortar, mpressive	8

UNIT 3	 Probabilistic analysis of loads: Introduction; load as a stochastic process, dead load, live loads, Wind load-introduction; wind speed, return period, estimation of lifetime design wind speed, probability model for wind load. 		
UNIT 4	Basic structural reliability: Introduction, computation of struc reliability. Reliability method: Introduction, basic variables and fa surface, first order second moment methods (FOSM).		8
UNIT 5	Monte Carlo study of Structural Safety: Concept of Monte C simulation and applications, case studies using MATLAB Sy reliability: Series, parallel and mixed system, Modelling of struc system.	stem	8
	TOTAL		42
REFEREN	NCES		
S. No.	Name of Books/Authors/Publishers	Year Publ Repr	ication /
1			
2	J R Benjamin and C A Cornell, "Probability, statistics and decisions for civil engineers," John Wiley, New York.	1970	
3	A H S Ang & W H Tang. Probability concepts in engineering planning and design, Volume II Decision, Risk & reliability." John Wiley, NY.	1984	
4	A Papoulis, "Probability, random variables and stochastic processes" 3rd Edition, McGraw-Hill, New York.	1991	
5	Ranganathan, R. (1999). Structural reliability analysis and design. Jaico Publishing House, Mumbai.	1999	

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering				
Course code: Course TitleCourse Structure.Pre-Requisite				Pre-Requisite
STE515. Equandia Structural Engineering	L	Т	Р	Nil
STE515: Forensic Structural Engineering	3	0	2	1N11

Course Objective: The proposed course is expected to enhance and strengthen the knowledge on the role and responsibility of a forensic engineer, different cause of deterioration in structures and its prevention, the uses of different NDT equipment's, awareness regarding the structural health monitoring, knowledge in Different modern techniques of retrofitting will be discussed.

S. No	Course Outcomes (CO)					
CO1	To understand the role and responsibility of a forensic engineer.					
CO2	To understand the different causes of deterioration in structures and their prevention.					
CO3	To gain adequate knowled	lge of the uses of di	fferent NDT equipment.			
CO4	To raise awareness regard	ing structural healt	h monitoring.			
CO5	To gain adequate knowled	lge in different mod	lern techniques of retrofitting	g.		
	CO-I	PO Articulation M	etrices			
Course Outcom e	PO1	PO2	PO3			
CO1	3	1	1			
CO2	3	2	1			
CO3	3	2	1			
CO4	3	3	2			
CO5	3	3	3			
S. No		Contents		Contact hours		
UNIT 1	in FSE (Understanding va ethics involved in variou Engineering), The Proces	rious codes, standar us parts of the glo ss of Forensic Inve sentation of "Life c	ards and Codes & Practices rds, applicable practices and obe on Forensic Structural estigation: Basic steps in a ycle" and "Pathology Base"	8		
UNIT 2	Engineering Failure of St performance problems – 1	ructures: Review o responsibility and a	f the construction theory – ccountability – case studies ctures, Pre-cast segmental	8		

	construction, Geotechnical Failures, Tunnel Collapse) – learning				
	failures – causes of distress in structural members – design and mat	erial			
	deficiencies – over-loading				
UNIT 3	Diagnosis and Assessment of Distress: Visual inspection – destructive tests, crack detection techniques – case studies – single multistorey buildings – Fibre optic method for prediction of struc weakness	and	10		
UNIT 4	Environmental Problems and Natural Hazards: Effect of corrochemical, and marine environment – pollution and carbonation problem – durability of RCC structures – damage due to earthquakes strengthening of buildings – provisions of BIS 1893 and 4326.	lems	8		
UNIT 5	Methods of repair in concrete, steel, and timber structural compone Modern Techniques of Retrofitting: Structural first aid after a disas Guniting, jacketing – use of chemicals in repair – application of poly – ferrocement and fiber concretes as rehabilitation material strengthening by pre-stressing – case studies Maintenance – inspec and planning, budgeting, and management.	ter – mers ls –	8		
	TOTAL		42		
REFERE					
TATAL TATAL	NCES				
S. No.	ENCES Name of Books/Authors/Publishers	Year o Public Repri	cation /		
S. No.		Public	cation /		
S. No. 1	Name of Books/Authors/PublishersDesign and Construction Failures, Dovkaminetzky, Galgotia	Public Repri	cation /		
S. No. 1 2	Name of Books/Authors/Publishers Design and Construction Failures, Dovkaminetzky, Galgotia Publication, New Delhi, 2009. Concrete – Building Pathology, Macdonald S, John Wiley and Sons,	Public Reprin 2009	cation /		
	Name of Books/Authors/PublishersDesign and Construction Failures, Dovkaminetzky, Galgotia Publication, New Delhi, 2009.Concrete – Building Pathology, Macdonald S, John Wiley and Sons, 2002.Forensic Structural Engineering Handbook, Robert. T Ratay, Mc	Public Reprin 2009 2002	cation /		

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering				
Course code: Course Title	Course Structure. Pre-Requisite			Pre-Requisite
STE517. Analysis & Design of Bridges	L	Т	Р	NL1
STE517: Analysis & Design of Bridges	3	1	0	Nil

Course Objective: The course aims to provide a basic understanding of the concepts and design of both concrete and steel bridges as per the latest Indian Road Congress (IRC) and Indian Railway Standard (IRS) specifications. The student is expected to independently plan, analyse, design, and detail various types and components of bridges after completion of this course. The students will be exposed through field visits (whenever feasible) to real-life bridge design and construction practices.

S. No	Course Outcomes (CO)				
CO1	Develop a sound knowledge of the investigation of hydrological and geological details, including flood discharge estimation for major bridge proposals.				
CO2	Design beam and slab br	idge decks.			
CO3	Design various compone	nts of a bridge sub	structure.		
CO4	Design box girder concre	ete bridges and bea	rings.		
	CO-P	O Articulation M	etrices		
Course Outcome	PO1	PO2	PO3		
CO1	3	1	1		
CO2	3 2 1				
CO3	3	2	1		
CO4	3	3	2		
	· · · · ·				
S. No		Contents		Contact hours	
UNIT 1		ads and Forces; Co	s; Site Selection, Planning, de Provisions for Design of	8	
UNIT 2	Analysis Methods, Gri Distribution and Design Box Type. Applied and S Supports in Straight, Cur	llage Analogy; T of Superstructure: Self-Induced Horiz ved, and Skewed D	Theories of Lateral Load Slab Type, Beam-Slab, and ontal Forces among Bridge Decks; Continuous Type and e Temperature Stresses in	8	

	Different Types of Foundations: Open, Pile, and Well Foundations;	10
UNIT 3	Choice of Foundation for Abutments and Piers; Design of Abutments,	
	Piers, Pile/ Pier Caps.	
	Effect of Differential Settlement of Supports; Bridge Bearings;	8
UNIT 4	Expansion Joints for Bridge Decks; Vibration of Bridge Decks; Parapet	
	and Railings for Highway Bridges.	
	Construction Methods; Segmental Construction of Bridges; Inspection	8
UNIT 5	and Maintenance of Bridges; Health Monitoring and Evaluation of	
	Existing Bridges; Bridge Failure: Case Studies.	
	TOTAL	42
REFERE	NCES	
REFERE	NCES	r of
REFERE S. No.	Yea	r of lication /
	Yea	lication /
	Name of Books/Authors/PublishersYear Pub RepChen W.F. & Duan L. (Eds.). (2014). "Bridge Engineering	lication / rint
S. No.	Name of Books/Authors/PublishersYearRep	lication / rint
S. No.	Name of Books/Authors/Publishers Year Pub Pub Chen, W. F., &Duan, L. (Eds.). (2014). "Bridge Engineering 2014 Handbook: Construction and Maintenance"- CRC Press. 2014 Smith, L.W. (1994)." Theory and design of bridges" Petros P	lication / rint 1
S. No.	Name of Books/Authors/Publishers Year Pub Pub Rep Chen, W. F., &Duan, L. (Eds.). (2014). "Bridge Engineering Handbook: Construction and Maintenance"- CRC Press. 2014	lication / rint 1
S. No.	Name of Books/Authors/Publishers Year Pub Pub Rep Chen, W. F., &Duan, L. (Eds.). (2014). "Bridge Engineering Handbook: Construction and Maintenance"- CRC Press. Smith, J. W. (1994) "Theory and design of bridges", Petros P. Xanthakos, Wiley Interscience, New York. Baina VK. (2002) "Concrete bridge practice analysis design	lication / rint 1
S. No. 1 2	Name of Books/Authors/PublishersYear Pub RepChen, W. F., &Duan, L. (Eds.). (2014). "Bridge Engineering Handbook: Construction and Maintenance"- CRC Press.2014Smith, J. W. (1994) "Theory and design of bridges", Petros P. Xanthakos, Wiley Interscience, New York.1994	lication / rint 1
S. No. 1 2	Name of Books/Authors/PublishersYear Pub RepChen, W. F., &Duan, L. (Eds.). (2014). "Bridge Engineering Handbook: Construction and Maintenance"- CRC Press.2014Smith, J. W. (1994) "Theory and design of bridges", Petros P. Xanthakos, Wiley Interscience, New York.1994Raina V.K. (2002), "Concrete bridge practice – analysis, design2007	lication / rint 4 4

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering				
Course code: Course Title		urse ucture	•	Pre-Requisite
STE520: Earthquake Resistant Design of	L	Т	Р	
Structures	3	0	2	Nil

Course Objective: The course provides the basic principles of earthquake-resistant design of structures. Students are introduced to the engineering aspects of earthquakes, their characterisation, and effects. The course covers seismic design force computation, design, and detailing as per Indian Standards. An introduction to seismic evaluation and retrofitting is also included.

S. No	Course Outcomes (CO)					
CO1	Plan a good structural configuration for seismic resistance.						
CO2	Calculate the earthquake 2002 (Part I).	e design forces usir	ng appropriate methods as per	r IS 1893-			
CO3	Apply the concept of Du structures.	ctility and Base iso	lation in designing earthquak	e-resistant			
CO4	Design the structure usin	ng the IS 13920 co	de provisions.				
	CO-I	PO Articulation M	letrices				
Course Outcome	PO1	PO2	PO3				
CO1	3	1	1 1				
CO2	3	2	2 1				
CO3	3	3 2 1					
CO4	3	3	2				
S. No		Contents		Contact hours			
UNIT 1	Overall form, Simplicit and Strength, Horizonta	y and Symmetry, I l and vertical Mem ildings, Framing	g, Continuous Load Path, Elongated Shapes, Stiffness bers, Twisting of Buildings, Systems, Effect of Non- l.	8			
UNIT 2	Requirement, Regular an Design Earthquake Lo Stresses, Seismic Meth Equivalent Lateral Fo Spectrum Method, Time	nd Irregular Configu ads, Basic Load od of Analysis, Fa rce Method, Dyr History Method, To rning Moments, Ot	Design: Seismic Design arations, Basic Assumptions, Combinations, Permissible actors in seismic Analysis, namic Analysis, Response orsion, Soft and Weak Storey her structural requirements, ponse Control.	8			

UNIT 3	Concept of Ductile Detailing, Introduction to Performance Based De Step-by-Step Procedure for Seismic analysis of a four-storied Building as per IS 1893 (Part I): 2002: Introduction, Analysi Equivalent Static Lateral Force Method, Response Spectrum Met Time History Method.	l RC s by	10	
UNIT 4	Design and detailing of RC framed building elements (beam, col- shear wall, diaphragm, and beam-column joint) as per IS 13920.	umn,	8	
UNIT 5	Introduction to nonlinear analysis methods, Analysis of a building unonlinear static procedure. Introduction to capacity design concepts displacement-based design methods.	_	8	
	TOTAL			
REFERE	NCES			
S. No.	Name of Books/Authors/Publishers	Year o Publio Repri	cation /	
1	Agarwal P. and Shrikhande M (2006)"Earthquake resistant design of structures"- Prentice-Hall of India	2006		
2	Paulay, T. and Priestley, M.J.N. (1991)"Seismic design of reinforced concrete and masonry buildings"- John Wiley & Sons			
3				
4	Duggal, S.K., "Earthquake Resistant Design of Structures"- Oxford University Press			
5	FEMA, P. (2000)"Commentary for the Seismic Rehabilitation of Buildings.FEMA-356" - Federal Emergency Management Agency, Washington, DC.	2000		
6	Chopra A.K. (2012) "Dynamics of structures: theory and applications to earthquake engineering"- Prentice Hall.	2012		

PO1: An ability to independently carry out research/investigation, and development work to solve practical problems.

PO2: An ability to write and present a substantial technical report/ document.

PO3: Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering				
Course code: Course Title	Course Structure. Pre-Requisite			
STE522. Soil Structure Interestion	L	Т	Р	NI1
STE522: Soil Structure Interaction	3	0	2	Nil

Course Objective: The Goal of this course is to expose the students to the concepts of soil structure interaction and the design of various substructures. By the completion of this course, the students will be able to analyse and design different types of substructures and thereby develop solutions for real-world problems.

S. No	Course Outcomes (CO)				
CO1	Elucidates the structure	interaction concept	and the complexities involv	ed.	
CO2	Evaluate soil structure i conditions of loading ar		ent types of structures under stics.	various	
CO3	Evaluate the interaction	analysis of piles an	d pile groups with a rigid ca	p.	
CO4	Evaluate the action of a strain characteristics of		lateral loading, considering	the stress-	
	CO-]	PO Articulation Mo	etrices		
Course Outcome	PO1	PO2	PO3		
CO1	3	1	1		
CO2	3 2 1				
CO3	3 2 1				
CO4	3	3	2		
S. No Contents				Contact hours	
UNIT 1	General soil-structure interaction problems: Contact pressures and soil- structure interaction for shallow foundations. Concept of sub-grade modulus, effects/parameters influencing subgrade modulus. Analysis of foundations of finite rigidity, Beams on elastic foundation concept, introduction to the solution of beam problems.				
UNIT 2	Foundation: Introduction foundation, method of s its application to analy beams and frames on wr	n, analysis of finite a uper position, metho vsis of regular bean inkle foundation, an	nite Beams on Wrinkler nd infinite beam on wrinkle od of initial parameters and ns, analysis of continuous alysis of frames on wrinkle zontal and vertical loads.	8	

	Analyzic of Doome on Floatic Helf Sugar, Introduction analyzic of		10		
UNIT 3	Analysis of Beams on Elastic Half Space: Introduction, analysis of F	-	10		
UNIT 5	Beams, short beam analysis, long beam Analysis, Analysis of Fram	le on			
	Elastic Half Space. Dynamic Soil Structure Interaction: Direct and Sub-structure method	adaf	8		
			8		
	Analysis, Equation of Motion for flexible and rigid base, kinematic				
UNIT 4	interaction, inertial interaction, and effect of embedment, Temporal				
	special variation of external loads including seismic loads, contin	uous			
	models, discrete models, and finite element models.		0		
	Wave Propagation for SSI: Waves in Semi-Infinite Medium, one,		8		
	and three-dimensional wave propagation, dynamic stiffness matrix				
	out-of-plane and in-plane motion. Free Field Response of Site: Co				
UNIT 5	point and control motion for seismic analysis, dispersion and attenu				
	of waves, half space, single layer on half space, modelling of boundaries,				
	elementary, local, consistent, and transmitting boundaries. Engineering				
	Application of Soil-Structure Interaction: Low-rise residential building,				
multi-storey building, bridges and dams, soil-pile structure interaction.					
	TOTAL		42		
REFERE	NCES				
		Year	of		
S. No.	Name of Books/Authors/Publishers	Publ	ication /		
		Repr	rint		
1	Tsudik, E. (2012)"Analysis of Structures on Elastic Foundations"-	2012			
	J. Ross Publishing	2012			
2	Wolf, J. P. (1985)"Dynamic soil-structure interaction"- Prentice 198				
	Hall Int.	1905			
3	Wolf, J. P., & Song, C. (1996). "Finite-element modelling of 199				
unbounded media"- Chichester: Wiley					
1	Kramer S. I. (1996). Geotechnical earthquake engineering (Vol				
4	4 80). Upper Saddle River, NJ: Prentice Hall.				
5	Structure Soil Interaction" - State of the Art Report, Institution of				

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering					
Course code: Course Title	Course Structure.			Pre-Requisite	
STE524: Design of Hydraulic Structures		Т	P	Nil	
		0	2	IN11	

Course Objective: The objective of this course is to provide students with an in-depth understanding of advanced concepts and analytical techniques in open channel hydraulics. The course aims to equip students with the skills necessary to analyse, design, and manage complex open channel flow systems through a combination of theoretical knowledge and practical application.

S. No	Course Outcomes (C	0)			
CO1	Classify types and parts of hydraulic structures and their importance in hydraulic engineering.				
CO2	Select the optimum de	sign discharge in de	esigning hydraulic structures	•	
CO3	Apply design principle structures, energy diss		ctures, bottom outlets, spillv ructures.	vay	
CO4	Apply the concept of I	ntegrated Water Re	source Management.		
CO5	Computational Model	ling of various hydr	aulic structures.		
	CO-]	PO Articulation M	etrices		
Course Outcome	PO1	PO2	PO3		
CO1	3	1	1		
CO2	3 2 1				
CO3	3 2 1				
CO4	3	3 3 2			
CO5	3	3	3		
S. No		Contents		Contact hours	
UNIT 1	Kinds of open channel flow, channel geometry, types and regimes of flow, Velocity distribution in open channel, wide open channel, specific energy, critical flow and its computation.				
UNIT 2	Energy in non-prismatic channel, momentum in open channel flow, specific force. Qualification of uniform flow, velocity measurement, Manning's and Chezy's formula, determination of roughness coefficients.				
UNIT 3		nels. Flow in a char	y, most economical sections, nnel section with composite ith open channel flow.	10	

UNIT 4	Aeried Flow: Dynamic equations of gradually varie assumptions and characteristics of flow profiles, classification profile, drawdown and backwater curves profile detern graphical integration, direct step and standard step method, n methods, flow through transitions. Varied Flow: Dynamic equ spatially varied flow. Analysis of spatially varied flow computation of spatially varied flow using numerical integra	n of flow nination, umerical ations of profile,	8
UNIT 5	Unsteady Flows: St. Venant's equations and their solution u method of characteristics and finite difference schemes; da problem, hydraulic flood routing. Channel Transitions: Sub-cr supercritical.	m break	8
	TOTAL		42
REFERE	NCFS		
S. No.	Name of Books/Authors/Publishers	Year Publi Repri	cation /
1	Chow, V.T., "Open Channel Hydraulics", McGraw-Hill. 1959		
2	Choudhary, M.H., "Open-Channel Flows", Prentice-Hall. 1994		
3	Ranga Raju, K.G., "Flow Through Open Channels, Tata McGraw Hill.	2003	

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering						
Course code: Course Title	urse code: Course Title Course Structure.		Pre-Requisite			
STE526: Cyclonic Risk and Hazard		Т	P	- NT'1		
Assessment	3	0	2	Nil		

Course Objective: The objective of this course is to impart knowledge about cyclonic risks and formulate strategies to prevent risks and build resilience.

S. No	Course Outcomes (CO)
CO1	To understand the concept of wind and storms.
CO2	To understand the probabilistic distributions of Cyclonic wind.
CO3	To gain adequate knowledge about microzoning and its uses.
CO4	To get awareness about the different techniques for vulnerability Assessment.
CO5	To gain adequate knowledge about the techniques for risk and hazard assessment.

	CO-PO Articulation Metrices						
Course Outcom e	PO1	PO2	PO3				
CO1	3	1	1				
CO2	3	2	1				
CO3	3	2	1				
CO4	3	3	2				
CO5	3	3	3				

S. No	Contents	Contact hours
UNIT 1	High wind and severe storms: Introduction, types of high wind, hurricanes, typhoons, cyclones Wind Characteristics: Variation of wind velocity with height and roughness, atmospheric circulation-pressure gradient force, Coriolis force, frictional force, geostrophic flow, boundary layer, Static wind effects and building codes with particular reference to IS875(part-I).	8
UNIT 2	Tropical Cyclones: General structure of Cyclones, Quantification of Cyclones, Various scales for measuring wind storms, Different types of distribution generally used in wind engineering problems, Probabilistic description of cyclonic wind speed, Exceedance Probabilities, Mean	8

	Recurrence Intervals, N-year Speed Estimation from Measured Wind				
	Speeds, wind storm/cyclone hazard in India, wind speed map of In	ndia,			
	Frequency of cyclones in India.				
UNIT 3	Cyclonic Microzonation: Cyclone key parameters, Probability distribution of cyclone key parameter, Artificial generation of distribution of velocity at a site using the cyclone key parameters, Hazard curve, hazard map, Microzonation of Andhra Pradesh and Orrisa.				
UNIT 4	Quantification of damage: Classification of Buildings, Damaging effects of high wind speeds on housing in the coastal region of India.				
UNIT 5	Vulnerability assessment: Concept of vulnerability of houses to cyclonic wind, fragility curve, damage ratio, Direct and component-based				
	TOTAL		42		
_					
REFEREN	NCES				
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint			
1	Simiu, E. & Scanlan, R.H. "Wind effects on structures: An Introduction to Wind Engineering."- John Wiley. (1986)	1986			
2	IS: 15498: "Guidelines for Improving the Cyclonic Resistance of Low-Rise Houses and other Buildings/Structures"-Bureau of Indian Standards, New Delhi.	2004			
3	Bhandari, N.M., Krishna, P. and Krishen, K. "Wind storms, damage and guidelines for mitigative measures." -Department of Civil Engineering, Indian Institute of Technology, Roorkee, Document No. IITK-GSDMA-Wind 03-V3.0.	2011			
4	Goyal, P.K., Datta, T. K., and Vijay, V. K. (2012) "Vulnerability of rural houses to cyclonic wind." -Int. J. Disaster Resilience in the Built Environment, 3(1), 20–41.	2012			
5	Vulnerability Atlas of India", BMPTC, Ministry of Urban Affairs and Employment, Government of India.	2019			
6	Goyal P.K. and Datta T.K. "Probability Distributions for Cyclone key Parameters and cyclonic wind speed for the east coast of Indian Region", The International Journal of Ocean and Climate Systems, Vol 2 (3), Multi science, UK.	2011			

M. Tech. S	tructural Engineering						
Course coo	le: Course Title			urse ucture	•	Pre-Req	uisite
STE530: Wind Engineering L T P 3 1 0 Nil					Nil		
	jective: To evaluate the nd to design structures fo		ous s	tructure	es usin	ng relevant	Indian
S. No	Course Outcomes (CO))					
CO1	To understand wind effe	ects on low as well a	ıs tall	buildi	ngs.		
CO2	Evaluation of wind force	es for various struct	tures	using r	eleva	nt Indian st	andards.
CO3	To design structures for	wind resistance.					
CO4	To understand the role of	of wind tunnel testin	ng for	structu	ural sa	ifety.	
CO5	To gain adequate knowl	edge in Different m	oderr	techni	iques	of retrofitti	ng.
	СО-	PO Articulation M	etric	es			
Course Outcome	PO1	PO2				PO3	
CO1	3	1				1	
CO2	3	2				1	
CO3	3	2				1	
CO4	3	3				2	
CO5	3	3				3	
S. No		Contents					Contact hours
UNIT 1	NIT 1 Introduction: Terminology – Wind Data – Gust factor and its determination - Wind speed variation with height–Shape factor – Aspect ratio – Drag and lift.				8		
UNIT 2	Effect of Wind on S Interference effects – R			2			8
UNIT 3	Tall buildings – Low-ri towers, and bridges. Stru- of structural systems, S interaction, staggered towers.	se buildings – Roof actural System in Ta shear walls of vario	`and ll Bui us ty	claddii ldings: pes; fra	ng – C Diffe ame–s	Chimneys, rent types shear wall	10

UNIT 4	Application to Design: Design forces on multi-storey buildings, towers, and roof trusses. Response of high–rise structures to lateral loads and design considerations.			
UNIT 5	Introduction to Wind Tunnel: Types of models– Basic consideration Examples of tests and their use.	ons – 8		
	TOTAL	42		
REFERE	NCES			
S. No.	Name of Books/Authors/Publishers			
1	Lawson T.V. (1993), "Wind Effects on Buildings", Vols. I and II, - Applied Science and Publishers, London.	1993		
2	Devenport A.G. (1990), "Wind Loads on Structures", Division of Building Research, Ottawa	1990		
3	Daniang Research, OttaviaTaranath, B.S (2003) "Analysis and Design of Tall Buildings"- CRC PRESS2003			
4	Sachs P, (1992) "Wind Forces in Engineering"- Pergamon Press, New York	1992		

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering				
Course code: Course Title	Course Structure.		•	Pre-Requisite
STE532: Design of Advanced Steel	of Advanced Steel L T P		Р	- NT'1
Structures	3	1	0	Nil

Course Objective: The proposed course is expected to enhance and strengthen the knowledge of detailed design methods for steel structures, in compliance with Indian and International codes. Analysis and design of bolted and welded connections, Design of steel members under special loads like fire and blast loads, design of industrial structures with gantry girders, and The design of light-gauge structures will be discussed.

S. No	Course Outcomes (CO)	Course Outcomes (CO)					
CO1	Can analyse and design a	Can analyse and design a typical frame subjected to general loading.					
CO2	Familiar with the design	of cold-formed sec	tions.				
CO3	Can analyse and design a	communication to	wer.				
CO4	Can analyse and design a	transmission tower	r.				
CO5	Can analyse and design a	steel truss bridge.					
	CO-	PO Articulation M	letrices				
Course Outcom e	PO1	PO2	PO3				
CO1	3	1	1				
CO2	3	2	1				
CO3	3	2	1				
CO4	3	3	2				
CO5	CO5 3 3 3						
S. No		Contents		Contact hours			
UNIT 1 Introduction to multi-storey buildings, loading, analysis for gravity and lateral loads, computer analysis of rigid frames, and advanced structural forms.			8				
UNIT 2	Introduction to space frames, types of space frames, space trusses, antimality criteria, and case studies. Introduction to cold formed steel						

		- 12
	TOTAL	42
UNIT 5	Introduction to bridges, steel for bridges, classification of steel bridges, loads and their combinations, analysis and design of plate girder and trussed bridges.	8
UNIT 4	Introduction to transmission towers, material properties, ground clearance, tower configurations, factor of safety, loads, and their design.	8
UNIT 3	Introduction to microwave towers, types of communication towers, ladders and platforms, and codal provisions.	10

KEI EK		
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	Arya A.S and Kumar, A. (2014), "Design of Steel Structures"-Nem Chand and Bros Roorkee	2014
2	Indian Railway Standard, "IRS Code of Practice for Design and Construction of Bridges and Structures", Volume I and II, Research Design and Standards Organisation, Lucknow. (2004)	2004
3	Duggal, S.K. (2009), "Design of Steel Structures", 3rd edition McGraw-Hill publication.	2009
4	 4. IS: 801 "Code of Practice for Use of Cold-Formed Light Gauge Steel Structural Members in General Building Construction", Bureau of Indian Standards, New Delhi. (1975) 	1975
5	IS: 802 "Code of Practice for Use of Structural Steel in Overhead Transmission Line Towers", Bureau of Indian Standards, New Delhi. (1992).	1992

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech.	Structural Engineering						
Course co	ode: Course Title			irse ucture	•	Pre-Req	uisite
STE534	: Retrofitting of Struct	ures	$\mathbf{s} \qquad \begin{array}{c c} \mathbf{L} & \mathbf{T} & \mathbf{P} \\ \hline 3 & 1 & 0 \end{array} \text{ Nil}$				
	bjective: This subject impation of Structures.	arts a broad knowled	lge in	n the ar	ea of	repair and	
S. No	Course Outcomes (CO)						
CO1	Evaluate/ assess the exis Conduct Preliminary fore NDT.						
CO2	Understand the different t level.	echniques for struct	tural	retrofit	ting a	t the local	and global
CO3	Analyse the deficiency strengthening techniques	for RCC structures.					
CO4	Analyse the deficiency strengthening techniques			ig and	reco	mmend th	e type of
CO5	Analyse the deficiency in techniques for reinforced		nd re	comme	end the	e type of str	engthening
	CO-1	PO Articulation Mo	etric	es			
Course Outcom	PO1	PO2				PO3	
<u>e</u>	2	1				1	
<u>CO1</u>	3 3	2				1	
CO2 CO3	3	2				1	
	3	3				2	
CO4	3	2				2	
CO5	5	3				3	
S. No		Contents					Contact hours
UNIT 1	Introduction: Terminolog retrofitting. Qualitative M screening procedure (RV Visual inspection method	Aethods of Seismic (SP) and simplified	e Eva d eva	luatior	n: Rap n of l	oid visual ouildings;	8
UNIT 2	Quantitative Methods of S using nonlinear static pus method of analysis (NDP ductility).	eismic Evaluation: h-over analysis (NS	Perfo P) ar	ormanc nd non	e base linea	ed method c dynamic	8
UNIT 3	Local and Global Metho System completion; Stren						10

	FRP Jacketing; Addition of new components – frames, shear walls	and		
	braced frames; Design of connections for retrofitting of struc			
	(Concrete to concrete connections for jacketing or addition of shear w			
	steel to concrete connections for addition structural braces, etc.).			
	Introduction to supplemental energy dissipation and base isolation	. Re-	8	
UNIT 4	evaluation of Buildings with Retrofitting Elements: Linear and Non-1		0	
	modelling; Modelling of soil and foundations.			
	Seismic Repair and Retrofitting of Earthquake-Damaged RC Build	ings	8	
	Schemes of temporary shuttering damages; Methods of repair	-	0	
UNIT 5	retrofitting. Seismic Evaluation and Retrofitting of RC Bridges: Sei			
01(11.0	evaluation and retrofitting techniques for reinforced concrete bridge			
	columns/piers, cap beams, cap beam-column joint, footing.	,••		
	TOTAL		42	
REFERE	INCES			
		Year	of	
S. No.	Name of Books/Authors/Publishers	Publication /		
5.110.	Name of Books/Authors/1 ublishers		int	
1	Agarwal, Pankaj, Shrikhande, Manish. "Earthquake Resistant	10001		
-	Design of Structures". Prentice–Hall India.	2006		
		2000		
	Duggal, S.K "Earthquake Resistant Design of Structures"-	2007		
	Oxford University Press.	2007		
	Priestley, M. N., Seible, F., & Calvi, G. M. "Seismic design and	2006		
	retrofit of bridges"- John Wiley & Sons.	2006		
2	"Seismic Evaluation and retrofit of concrete building" – Vol. I &			
	II"- Applied Technology Council, California, ATC 40.			
	"Rapid Visual Screening of Buildings for Potential Seismic	1996/	2002	
	Hazards", Federal Emergency Management Agency, Building			
	Seismic Safety Council, Washington, D.C., FEMA 154/155.			
3	FEMA-356. "Commentary for the Seismic Rehabilitation of			
	Buildings," Federal Emergency Management Agency, Washington,			
	DC.	2007/	2009	
	FEMA, P-695. "Quantification of Building Seismic Performance			
	Factors"- Federal Emergency Management Agency.			
1	FEMA-440, A., "Improvement of nonlinear static seismic analysis	2005		
4	procedures". FEMA-440, Redwood City.	2005		
	A Primer on Rapid Visual Screening (RVS) Consolidating			
5	Earthquake Safety Assessment Efforts in India by National	2020		
	Disaster Management Authority.			

M. Tech.	Structural Engineering							
Course co	ode: Course Title			ırse ucture	•	Pre-Req	equisite	
STE536	: Disaster Manageme	nt and	L	Т	Р			
Mitigati	0		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Nil		
	bjective: The objective o and their mitigation.	f this course is to im	part l	knowle	dge al	bout variou	s hazards,	
S. No	Course Outcomes (CO))						
CO1	To gain adequate knowled cause and contribute to s	-	d ma	n-mad	e haza	ords and fac	tors that	
CO2	To understand the Manag	gement and mitigation	on of	earthq	uakes.			
CO3	To understand the Manag	gement and mitigation	on of	cyclon	es.			
CO4	To understand the Manag	gement and mitigatio	on of	floods	and la	andslides.		
CO5	To gain adequate knowle sustainable development		nd Re	econstr	ructior	and recov	ery for	
	CO	PO Articulation M	etric	es				
Course Outcom e	PO1	PO2				PO3		
CO1	3	1				1		
CO2	3	2				1		
CO3	3	2				1		
CO4	3	3				2		
CO5	3	3				3		
S. No		Contents					Contact hours	
UNIT 1	Introduction to various h Scales of disaster vulne disaster risk managemen site condi Damages: Grade of dam structures	rability and risk, Ten t, hazard estimation tions c	rmino , haza on	ology a ard ma	and co pping, s	oncepts in , effect of structures.	8	

	present initiatives in India, disaster management plan, approache seismic risk mitigation, seismic strengthening and retrofitting meth		
	Management and mitigation of cyclones: Understanding cyclone		10
	wind hazard in India, vulnerability and risk assessment, early war		10
UNIT 3	systems, structural mitigation measures, management of coastal zo	0	
UNIT 5	Cyclonic Risk assessment, damage probability Matrix, Fragility	-	
	Vulnerability Analysis	anu	
	Management and mitigation of flood: Types of floods, categorization	onof	8
	flood situations, structural measures for flood management, urban f		0
	disaster risk management, diban r		
UNIT 4	Management and mitigation of landslide: Introduction to landslide ha		
	Landslide Vulnerability and Risk in India, Hazard Zonation Map		
	Geological and Geotechnical Investigations, Landslide mitig		
	measures.	ation	
	Disaster Management Act: Disaster management policy; Techno-I	egal	8
	aspect: Techno-Legal and Techno-Financial work; legislation, land		0
	zoning regulation, development control regulations, and building		
UNIT 5	laws, Disaster Institutional framework and mechanism, History and s	-	
011113	-	ndia.	
	Post Disaster Issues: Post-disaster Reconstruction and recovery		
	sustainable development.		
	TOTAL		42
REFERE	NCES		
		Year	
S. No.	Name of Books/Authors/Publishers	Publi	cation /
		Repri	nt
1	P.K. Goyal and Anil Gupta (2023) "Disaster Management"	2023	
	Published by AICTE, New Delhi.	2025	
2	Blaikie, P., Cannon, T. (2014), Davis, I., & Wisner, B. "At risk:		
	natural hazards, people's vulnerability and disasters" Routledge.	2014	
3	Mileti, D. (1999). "Disasters by Design: A Reassessment of		
	Natural Hazards in the United States," Joseph Henry Press.	1999	
4	Reiter, L. (1991) 'Earthquake hazard analysis: issues and insights',		
-	Columbia University Press.	1991	
5	National Institute of Disaster Management Documents. www.		
5	http://nidm.gov.in.	Lates	t version

- **PO1:** An ability to independently carry out research/investigation, and development work to solve practical problems.
- **PO2**: An ability to write and present a substantial technical report/ document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialisation of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program.

M. Tech. Structural Engineering				
Course code: Course Title	Course Structure.			Pre-Requisite
GTE540: Computational Lab- Structural Engineering		Т	Р	NI:1
		0	8	Nil

Course Objective: Equip students with programming and numerical computation skills applicable to structural engineering.

- Develop the ability to model and analyze structural systems using computational tools.
- Introduce finite element modeling and simulation using industry-standard software.
- Enable automation of structural design processes and simulation workflows.

	l .						
S. No	Course Outcomes (CO)						
CO1	Implement basic structural analysis using matrix methods and numerical tools.						
CO2	Develop scripts for automating repetitive structural design calculations.						
CO3	Use finite element software to model, analyse, and design structural systems.						
CO4	Simulate dynamic behaviou	r and evaluate seisr	nic/wind performance.				
	CO	-PO Articulation	Metrices				
Course Outco me	PO1	PO2	PO3				
CO1	3	1	1				
CO2	3	2	1				
CO3	1	2	1				
CO4	3	3	2				
				Contact			
S. No		Contents		hours			
UNIT 1	UNIT 1 Introduction to Computational Structural Analysis, Numerical Methods in Structural Engineering. Matrix Methods in Structural Analysis (Truss and frame stiffness matrix development).						
UNIT 2		ng basic structural	for Beams and Frames, Intro to models). Static Load Analysis in er DL/LL).	8			

UNIT 3	 Seismic & Wind Load Applications (Load application per IS 1893/IS 875) Modal Analysis & Structural Dynamics (Natural frequency calculation). 				
UNIT 4 Time History and Response Spectrum (Simulating earthquake responses).			8		
UNIT 5RC Design Automation (Create RC beam/column design spreadsheet). Steel Design using IS 800 (Script/code for steel section checks). Structural Optimization. Final Project Presentation.			8		
TOTAL			42		
REFERE	NCES				
S. No.	Name of Books/Authors/Publishers	Year Publi Repri	cation /		
1	Programming: MATLAB / Python (NumPy, SciPy, Matplotlib).	Lates	t versions		
	Software: ETABS, STAAD.Pro, SAP2000.				
	Documentation/Automation : MS Excel with VBA, LaTeX (for reporting).				
	Standards: IS 456, IS 800, IS 875, IS 1893.				

M. Tech. Structural Engineering				
Course code: Course Title	e Course Structure. Pre-Requisite			Pre-Requisite
STE541: Introduction to AI Techniques in Structural		Т	Р	Nil
Engineering	1 0 2		2	

Course Objective: The objective of this course is to introduce students to fundamental techniques and concepts in Artificial Intelligence (AI). The course will cover the basic principles of AI, machine learning, and deep learning, as well as their applications in various domains. Students will learn about different AI techniques, algorithms, and methodologies used for problem-solving and decision-making tasks. The course aims to provide a solid foundation in AI, enabling students to understand the capabilities and limitations of AI technologies and apply them effectively in practical scenarios. By the end of the course, students will be prepared to explore advanced topics in AI and pursue further studies or careers in AI-related fields.

S. No	Course Outcomes (CO)		
CO1	Understand Fundamenta	,		
CO2	Apply AI Techniques.			
CO3	Evaluate AI Models.			
CO4	Utilize AI Tools and Fra	meworks.		
CO5	Discuss Ethical and Soc	ial Implications		
		CO-PO Articulat	ion Metrices	
Course Outco me	PO1	PO2	PO3	
CO1	3	1	1	
CO2	3	2	1	
CO3	3	2	1	
CO4	3	3	2	
CO5	3	3	3	
S. No	Contents			Contact hours
UNIT 1			, definition, and components of ES. ning and backward reasoning.	5
UNIT 2	-	-	dge representation methods, and base, dealing with uncertainty, linear	4

	and nonlinear behaviour of variables, statistical concepts, and their applications	
	to engineering and sciences.	
UNIT 3	Artificial Neural Networks (ANNs): background and history of ANNs, definitions and basic concepts of ANNs, biological and artificial neural networks, feed-forward and feed-back networks.	4
UNIT 4	Supervised and unsupervised learning methods-standard back-propagation (BP), concept of learning, learning rate and momentum concepts, self-organizing networks, etc., development of ANN models for specific problems, and selected case studies.	4
UNIT 5	Introduction to Genetic Algorithms (GAs): fundamentals and preliminary concepts of evolution and GA, preliminaries of optimization, genetic operators-selection, crossover, and mutation, binary and real-coded GAs, selected case studies involving GA applications to engineering.	
	TOTAL	22
	TOTAL	
REFERF	INCES	
S. No.	Year	lication /
1	Russell & Norvig: Artificial Intelligence; A Modern Approach, 3rd 2010	
2	Qiangfu ZHAO and Tatsuo Higuchi, Artificial Intelligence: from fundamentals to intelligent searches, Kyoritsu.	1

M. Tech. Structural Engineering				
Course code: Course Title		ırse ucture.		Pre-Requisite
GTE542: Modelling and Simulation in Structural	L	Т	Р	Nil
Engineering	2	0	4	INII

Course Objective: Equip students with programming and numerical computation skills applicable to structural engineering.

- Develop the ability to model and analyze structural systems using computational tools.
- Introduce finite element modeling and simulation using industry-standard software.
- Enable automation of structural design processes and simulation workflows.

G N				
S. No	Course Outcomes (CO)			
CO1	Implement basic structural	analysis using matri	ix methods and numerical tools.	
CO2	Develop scripts for automat	ing repetitive struct	tural design calculations.	
CO3	Use finite element software	to model, analyse,	and design structural systems.	
CO4	Simulate dynamic behaviou	r and evaluate seisr	nic/wind performance.	
	CC	D-PO Articulation	Metrices	
Course Outco me	PO1	PO2	PO3	
CO1	3	1	1	
CO2	3	2	1	
CO3	1	2	1	
CO4	3	3	2	
	I			
S. No		Contents		Contact hours
UNIT 1	-	rix Methods in Strue	alysis, Numerical Methods in ctural Analysis (Truss and frame	10
UNIT 2		ing basic structural	for Beams and Frames, Intro to models). Static Load Analysis in er DL/LL).	8

UNIT 3	Seismic & Wind Load Applications (Load application per IS 1893/IS 8 Modal Analysis & Structural Dynamics (Natural frequency calculation).	875).	8
UNIT 4	Time History and Response Spectrum (Simulating earthquake responses).		8
UNIT 5	RC Design Automation (Create RC beam/column design spreadsheet). Design using IS 800 (Script/code for steel section checks). Struc Optimization. Final Project Presentation.		8
	TOTAL		42
REFERE	INCES		
S. No.	Name of Books/Authors/Publishers	Year Public Repri	cation /
1	Programming: MATLAB / Python (NumPy, SciPy, Matplotlib).	Latest	versions
	Software: ETABS, STAAD.Pro, SAP2000.		
	Documentation/Automation : MS Excel with VBA, LaTeX (for reporting).		
	Standards: IS 456, IS 800, IS 875, IS 1893.		

M. Tech.	Structural Engineering						
Course c	ode: Course Title		Cou Stru	irse icture	•	Pre-Requ	isite
STE601:	Design of Prestressed Concr	ete Structures	L 3	T 1	P 0	STE505: I Advanced Structures	0
Course C	Dejective: To equip students t	o design prestressed	concre	ete stru	ictures	•	
S. No	Course Outcomes (CO)						
CO1	Introduction to the prestressi	ng system, componen	nts, an	d beha	viour	with concret	e.
CO2	Assessment of the composite	e action of prestressed	d steel	with o	concret	te.	
CO3	Analysis and design of prestr	cessed concrete struct	ures.				
CO4	Evaluating and applying prestr Structures.	ressing principles in the	desigr	n of the	e Prest	ressed Conci	rete
CO5	Explore emerging trends in c	omplex prestressed c	oncre	te stru	ctures.		
	CO·	-PO Articulation Mo	etrice	5			
Course Outco me	PO1	PO2				PO3	
CO1	3	1				1	
CO2	3	2				1	
CO3	3	2				1	
CO4	3	3				2	
CO5	3	3				3	
S. No		Contents					Contact hours
UNIT 1	Introduction: Prestressing S Advantages of Prestressing & Source of prestressing force, post-tensioning. Prestressing of Concrete. Hardened Concr	Limitations of Prest External or internal p Systems and Devices	ressing prestre . Post-	g. Type ssing, tensio	es of Pr Pre-te ning. C	estressing: nsioning or	8
UNIT 2	Prestressing Steel. Losses in T Relaxation of steel, Total Tir	Prestress-Creep of co	ncrete	, Shrir	kage c		4
UNIT 3	Analysis of Members: Analys Introduction, Analysis at tran strength, Analysis of behav Partially Prestressed Section	sis of Members Under sfer, Analysis at servi viour. Analysis of F	Axial ice loa langeo	Load ds, An l Sect	& Und alysis ion- A	er Flexure- of ultimate nalysis of	10

UNIT 4Design of Member for Flexure: Calculation of moment demand, Choic sections, Determination of limiting zone, post-tensioning in stages. Analysis Design for Shear and Torsion: Stress in an uncracked beam, Types of crace Components of shear resistance, Modes of failure, Effect of prestressing for Detailing Requirements for Flexure, Shear, and Torsion.UNIT 5Calculations of Deflection and Crack Width: Transmission of Prest Introduction, Pre-tensioned members, Transmission length, Development lend End zone reinforcement; post-tensioned members- End zone reinforcer Bearing plate.UNIT 6Cantilever and Continuous Beams, Composite Sections, One-way and two- Slabs, Compression Members, rehabilitation using prestressing.REFERENCES	s and acks, force. tress: ength, ment,	8 6 6 42
UNIT 5 Calculations of Deflection and Crack Width: Transmission of Prest Introduction, Pre-tensioned members, Transmission length, Development lend zone reinforcement; post-tensioned members- End zone reinforcement; Bearing plate. UNIT 6 Cantilever and Continuous Beams, Composite Sections, One-way and two-Slabs, Compression Members, rehabilitation using prestressing. TOTAL	ength, ment,	6
Oldition Slabs, Compression Members, rehabilitation using prestressing. TOTAL	-way	-
		42
REFERENCES		
REFERENCES		
	Year of	
S. No. Name of Books/Authors/Publishers	Publicat Reprint	tion /
1 Krishna Raju N. "Prestressed concrete", Tata McGraw-Hill Company, New Delhi.	2007	
2 Mallik S.K. and Gupta A.P. "Prestressed concrete", Oxford and IBH.	1987	
3 Design of Prestressed Concrete Structures, Lin T .Y and Burns N.H, John Wiley and Sons.	1982	
4 Fundamentals of Prestressed Concrete, Sinha N.C and Roy S.K., S. Chand and Co., New Delhi.	1985	
5 IS: 1343 Prestressed Concrete — Code of Practice.	2012	